Anyone know how to figure out this enigma? I've looked at formulas for Least Significant Difference (LSD), and I can't seem to figure out how to implement them in Excel. I need to come up with LSD values for the following 10 traits (e.g. 10 traits) and 3 associated sample codes (286, 495, 602), for the 15 "consumers" listed below.

I know this website talks about it here a little bit: http://www.biology.ed.ac.uk/research...ress6.html#LSD

(note: i'm operating under "multi-way ANOVA", it's not one-tailed, or two-tailed, since i'm dealing with 10 traits) ...oh, and i'm extremely thankful for you even reading this!

consumer Code Rep trait1 trait2 trait3 trait4 trait5 trait6 trait7 trait8 trait9 trait10
56 286 2 15 25 40 22 18 27 5 4 83 13
56 286 1 23 35 48 13 11 33 3 2 83 15
57 286 2 24 38 51 12 8 28 3 1 84 7
57 286 1 24 43 55 15 11 28 3 1 82 10
58 286 2 27 42 52 15 11 33 3 6 86 12
58 286 1 28 42 51 13 11 30 3 5 85 16
60 286 2 27 38 51 9 6 26 5 3 90 5
60 286 1 27 45 55 12 7 40 5 3 90 16
61 286 2 20 35 45 12 10 36 7 5 86 12
61 286 1 18 27 40 6 4 35 7 5 84 15
62 286 2 28 42 54 15 10 33 5 2 75 15
62 286 1 30 42 55 16 13 34 6 4 78 15
63 286 2 25 32 48 13 15 25 9 5 89 16
63 286 1 30 42 48 10 8 15 10 5 88 15
64 286 2 22 30 37 8 4 29 14 0 87 20
64 286 1 20 27 37 5 4 29 12 0 88 20
65 286 2 28 43 55 10 8 35 5 4 85 20
65 286 1 23 42 53 10 8 30 4 2 82 20
66 286 2 20 33 45 10 8 45 7 0 85 15
66 286 1 20 32 45 6 4 30 7 2 88 15
67 286 2 30 50 58 8 4 32 7 0 88 12
67 286 1 32 45 58 6 4 32 7 2 88 15
74 286 2 28 45 65 10 2 35 6 0 84 18
74 286 1 28 45 60 8 2 35 6 0 87 18
78 286 2 16 29 39 9 8 35 9 6 90 20
78 286 1 15 29 41 11 10 35 8 5 85 21
83 286 2 . . . . . . . . . .
83 286 1 27 42 45 5 4 32 11 0 88 18
101 286 2 25 45 56 4 3 35 5 2 88 20
101 286 1 25 45 55 7 3 37 3 2 89 17
56 495 2 5 25 35 20 18 28 4 4 88 15
56 495 1 15 30 35 18 16 28 4 2 87 14
57 495 2 10 25 45 15 12 20 4 1 85 10
57 495 1 15 35 45 8 7 30 3 1 85 15
58 495 2 18 43 55 13 9 29 4 10 84 15
58 495 1 18 42 52 15 11 32 4 3 85 8
60 495 2 18 37 53 8 5 28 5 2 87 15
60 495 1 15 22 48 15 12 38 5 2 86 9
61 495 2 14 26 47 15 10 37 8 5 85 14
61 495 1 15 25 35 12 7 28 7 5 87 10
62 495 2 18 38 50 14 10 30 4 4 82 15
62 495 1 18 40 50 15 10 30 4 2 80 15
63 495 2 18 40 52 15 10 28 9 0 88 15
63 495 1 20 35 48 15 14 25 7 5 89 10
64 495 2 22 32 40 9 5 35 11 0 88 20
64 495 1 22 32 10 7 27 11 0 87 20
65 495 2 22 38 55 14 10 30 4 3 82 18
65 495 1 22 38 53 25 18 30 4 5 82 20
66 495 2 15 25 33 8 5 25 9 1 84 16
66 495 1 15 25 32 6 5 20 7 1 86 17
67 495 2 22 38 55 8 6 32 7 0 88 15
67 495 1 22 38 52 12 8 28 7 0 88 12
74 495 2 20 45 60 8 2 31 6 0 84 19
74 495 1 25 45 65 8 4 35 5 0 87 20
78 495 2 12 17 29 9 7 36 9 5 91 21
78 495 1 12 18 29 11 8 36 8 5 89 21
83 495 2 13 35 43 7 3 30 10 0 86 15
83 495 1 20 37 43 7 4 28 12 0 83 12
101 495 2 20 47 60 18 10 35 6 1 78 20
101 495 1 15 30 45 7 5 30 5 2 90 20
56 602 2 15 42 55 12 9 35 5 3 87 15
56 602 1 23 37 50 10 10 30 4 2 83 15
57 602 2 24 41 50 14 11 28 3 1 85 15
57 602 1 24 38 52 11 7 28 3 1 84 10
58 602 2 27 44 55 15 12 34 4 9 87 18
58 602 1 28 43 56 15 11 32 3 4 78 12
60 602 2 27 39 47 14 11 33 5 2 89 13
60 602 1 27 37 50 13 7 30 5 1 88 13
61 602 2 20 32 46 2 4 32 8 5 86 12
61 602 1 18 27 35 10 5 30 9 5 82 10
62 602 2 28 43 55 15 12 32 4 4 80 15
62 602 1 30 43 55 15 11 32 4 3 78 15
63 602 2 25 35 48 17 15 30 9 0 88 14
63 602 1 30 48 52 10 8 30 9 5 88 15
64 602 2 22 25 30 5 3 29 10 0 87 20
64 602 1 20 29 37 8 4 32 13 0 86 18
65 602 2 28 42 53 13 11 32 4 3 82 18
65 602 1 23 42 55 15 13 31 4 2 82 16
66 602 2 20 35 42 4 3 20 7 1 84 14
66 602 1 20 35 42 10 6 25 7 2 83 16
67 602 2 30 42 58 8 6 30 7 0 89 15
67 602 1 32 42 58 6 4 32 7 0 88 15
74 602 2 28 45 60 12 4 33 6 0 87 20
74 602 1 28 45 56 10 4 32 5 2 86 20
78 602 2 16 31 42 14 10 38 10 6 91 22
78 602 1 15 28 35 2 1 37 7 5 89 21
83 602 2 27 45 48 6 3 35 11 0 83 8
83 602 1 . . . . . . . . . .
101 602 2 25 46 56 7 4 34 5 2 87 22
101 602 1 25 40 50 6 3 35 6 2 85 15