Thread: [STATA - gsem] Multilevel Structural Equation Model - Meta Analysis

1. [STATA - gsem] Multilevel Structural Equation Model - Meta Analysis

Hello,

I am quite familiar with mixed effects (multilevel models) in meta analyses.
Now, I want to do a mixed effects (multilevel) meta analysis structural equation model (MASEM) with STATA and the gsem package because my data format is long.

My data look like:
HTML Code:
```````id studyId	performance	education moderator1 moderator2`
`1   1           -0.4 	      0.1 	    1 	        0`
`2   1 	   0.2 	      0.1 	    0 	        1`
`3   2 	   0.5 	      0.3 	    0 	        1`
`4   3 	  -0.1 	      0.4 	    1 	        0`
`5   3 	  -0.6 	      0.4 	    1 	        0`     ``````

performance: Firm-Performance, correlation coefficients (Fisher z transformed)
moderator1-moderator2: My moderator variables, have some nusisance variables as well but do not display it here.
education: Pre-dominant education level in a certain country

All variables are weighted by w = fisher z variance + tau

I want to model primary study effects nested in primary studies (results grouped in the related study).

PHP Code:
```     gsem (performance <- moderator1 moderator2 education M1[id]@1 M2[id>studyId]@1)       (moderator1 <- education M3[id]@1 M4[id>studyId]@1)       (moderator2 <- education M5[id]@1 M6[id>studyId]@1),       Latent(M1 M2 M3 M4 M5)       cov(e.performance M1[id]*M2[id>studyId])     cov(M3[id]*M4[id>studyId])     cov(M5[id]*M6[id>studyId])  ```
I am not sure about the specification of the model in STATA.
1. Did I model the covariances in a correct way?
2. @1 means I normalize the latent variable. What alternatives do I have?
3. Is it enough just to model the error term (e.performance) of the dependent variable performance or do I have to model all variables there?

Thank you very much for your support :-)

2. Re: [STATA - gsem] Multilevel Structural Equation Model - Meta Analysis

Hiya, your post was automatically flagged as spam for some reason, I've released it from the moderation queue now - sorry about that!

 Tweet