Least Significant Difference, Calculate in Excel?

#1
Anyone know how to figure out this enigma? I've looked at formulas for Least Significant Difference (LSD), and I can't seem to figure out how to implement them in Excel. I need to come up with LSD values for the following 10 traits (e.g. 10 traits) and 3 associated sample codes (286, 495, 602), for the 15 "consumers" listed below.

I know this website talks about it here a little bit: http://www.biology.ed.ac.uk/research/groups/jdeacon/statistics/tress6.html#LSD

(note: i'm operating under "multi-way ANOVA", it's not one-tailed, or two-tailed, since i'm dealing with 10 traits) ...oh, and i'm extremely thankful for you even reading this! :)

consumer Code Rep trait1 trait2 trait3 trait4 trait5 trait6 trait7 trait8 trait9 trait10
56 286 2 15 25 40 22 18 27 5 4 83 13
56 286 1 23 35 48 13 11 33 3 2 83 15
57 286 2 24 38 51 12 8 28 3 1 84 7
57 286 1 24 43 55 15 11 28 3 1 82 10
58 286 2 27 42 52 15 11 33 3 6 86 12
58 286 1 28 42 51 13 11 30 3 5 85 16
60 286 2 27 38 51 9 6 26 5 3 90 5
60 286 1 27 45 55 12 7 40 5 3 90 16
61 286 2 20 35 45 12 10 36 7 5 86 12
61 286 1 18 27 40 6 4 35 7 5 84 15
62 286 2 28 42 54 15 10 33 5 2 75 15
62 286 1 30 42 55 16 13 34 6 4 78 15
63 286 2 25 32 48 13 15 25 9 5 89 16
63 286 1 30 42 48 10 8 15 10 5 88 15
64 286 2 22 30 37 8 4 29 14 0 87 20
64 286 1 20 27 37 5 4 29 12 0 88 20
65 286 2 28 43 55 10 8 35 5 4 85 20
65 286 1 23 42 53 10 8 30 4 2 82 20
66 286 2 20 33 45 10 8 45 7 0 85 15
66 286 1 20 32 45 6 4 30 7 2 88 15
67 286 2 30 50 58 8 4 32 7 0 88 12
67 286 1 32 45 58 6 4 32 7 2 88 15
74 286 2 28 45 65 10 2 35 6 0 84 18
74 286 1 28 45 60 8 2 35 6 0 87 18
78 286 2 16 29 39 9 8 35 9 6 90 20
78 286 1 15 29 41 11 10 35 8 5 85 21
83 286 2 . . . . . . . . . .
83 286 1 27 42 45 5 4 32 11 0 88 18
101 286 2 25 45 56 4 3 35 5 2 88 20
101 286 1 25 45 55 7 3 37 3 2 89 17
56 495 2 5 25 35 20 18 28 4 4 88 15
56 495 1 15 30 35 18 16 28 4 2 87 14
57 495 2 10 25 45 15 12 20 4 1 85 10
57 495 1 15 35 45 8 7 30 3 1 85 15
58 495 2 18 43 55 13 9 29 4 10 84 15
58 495 1 18 42 52 15 11 32 4 3 85 8
60 495 2 18 37 53 8 5 28 5 2 87 15
60 495 1 15 22 48 15 12 38 5 2 86 9
61 495 2 14 26 47 15 10 37 8 5 85 14
61 495 1 15 25 35 12 7 28 7 5 87 10
62 495 2 18 38 50 14 10 30 4 4 82 15
62 495 1 18 40 50 15 10 30 4 2 80 15
63 495 2 18 40 52 15 10 28 9 0 88 15
63 495 1 20 35 48 15 14 25 7 5 89 10
64 495 2 22 32 40 9 5 35 11 0 88 20
64 495 1 22 32 10 7 27 11 0 87 20
65 495 2 22 38 55 14 10 30 4 3 82 18
65 495 1 22 38 53 25 18 30 4 5 82 20
66 495 2 15 25 33 8 5 25 9 1 84 16
66 495 1 15 25 32 6 5 20 7 1 86 17
67 495 2 22 38 55 8 6 32 7 0 88 15
67 495 1 22 38 52 12 8 28 7 0 88 12
74 495 2 20 45 60 8 2 31 6 0 84 19
74 495 1 25 45 65 8 4 35 5 0 87 20
78 495 2 12 17 29 9 7 36 9 5 91 21
78 495 1 12 18 29 11 8 36 8 5 89 21
83 495 2 13 35 43 7 3 30 10 0 86 15
83 495 1 20 37 43 7 4 28 12 0 83 12
101 495 2 20 47 60 18 10 35 6 1 78 20
101 495 1 15 30 45 7 5 30 5 2 90 20
56 602 2 15 42 55 12 9 35 5 3 87 15
56 602 1 23 37 50 10 10 30 4 2 83 15
57 602 2 24 41 50 14 11 28 3 1 85 15
57 602 1 24 38 52 11 7 28 3 1 84 10
58 602 2 27 44 55 15 12 34 4 9 87 18
58 602 1 28 43 56 15 11 32 3 4 78 12
60 602 2 27 39 47 14 11 33 5 2 89 13
60 602 1 27 37 50 13 7 30 5 1 88 13
61 602 2 20 32 46 2 4 32 8 5 86 12
61 602 1 18 27 35 10 5 30 9 5 82 10
62 602 2 28 43 55 15 12 32 4 4 80 15
62 602 1 30 43 55 15 11 32 4 3 78 15
63 602 2 25 35 48 17 15 30 9 0 88 14
63 602 1 30 48 52 10 8 30 9 5 88 15
64 602 2 22 25 30 5 3 29 10 0 87 20
64 602 1 20 29 37 8 4 32 13 0 86 18
65 602 2 28 42 53 13 11 32 4 3 82 18
65 602 1 23 42 55 15 13 31 4 2 82 16
66 602 2 20 35 42 4 3 20 7 1 84 14
66 602 1 20 35 42 10 6 25 7 2 83 16
67 602 2 30 42 58 8 6 30 7 0 89 15
67 602 1 32 42 58 6 4 32 7 0 88 15
74 602 2 28 45 60 12 4 33 6 0 87 20
74 602 1 28 45 56 10 4 32 5 2 86 20
78 602 2 16 31 42 14 10 38 10 6 91 22
78 602 1 15 28 35 2 1 37 7 5 89 21
83 602 2 27 45 48 6 3 35 11 0 83 8
83 602 1 . . . . . . . . . .
101 602 2 25 46 56 7 4 34 5 2 87 22
101 602 1 25 40 50 6 3 35 6 2 85 15