A
how can maximum the
\( \sum\limits_{j=1}^{J}{\sum\limits_{t=1}^{T}{h_{jt}(x_t;\theta)\dfrac{e^{\alpha_j+X\beta}}{\sum\limits_{l=1}^{L}{e^{\alpha_l+X\beta}}}}}\)
where \(h_{jt}\) is known and\(\alpha\) and \(\beta=(\beta_1,\ldots,\beta_s)\) are parameter and must be estimate.
\( \sum\limits_{j=1}^{J}{\sum\limits_{t=1}^{T}{h_{jt}(x_t;\theta)\dfrac{e^{\alpha_j+X\beta}}{\sum\limits_{l=1}^{L}{e^{\alpha_l+X\beta}}}}}\)
where \(h_{jt}\) is known and\(\alpha\) and \(\beta=(\beta_1,\ldots,\beta_s)\) are parameter and must be estimate.
Last edited by a moderator: