df <- 4 # degree of freedom
reps <- 800000 # number of simulations per one sample size
sample_size=c(2,4,6,8,10,15,20,25,30,35,40) # sample size
mean_pvalues <- numeric(length(sample_size))
set.seed(1)
j <- 1
for (n in sample_size)
{
pvalues <- numeric(reps)
for (i in 1:reps)
{
x1 <- rchisq(n, df, ncp = 0)
x2 <- rchisq(n, df, ncp = 0)
pvalues[I] [ i ]<- t.test(x2,x1,alternative="greater")$p.value
}
mean_pvalues[j] <- mean(pvalues < 0.05)
j=j+1
}
mean_pvalues
plot(sample_size,mean_pvalues)
lines(sample_size,mean_pvalues,col="blue")
#-2.-------------------
mu <- 10 # mean under the null hypothesis
sigma <- 20 # mean under the null hypothesis
#reps <- 800000 # number of simulations per one sample size
sample_size=c(2,4,6,8,10,15,20,25,30,35,40) # sample size[/I]
[I]mean_pvalues2 <- numeric(length(sample_size))[/I]
[I]set.seed(1)[/I]
[I]j <- 1
for (n in sample_size)
{
pvalues <- numeric(reps)
for (i in 1:reps)
{
x1 <- rnorm(n, mu, sigma)
x2 <- rnorm(n, mu, sigma)
pvalues[I] [ i ]<- t.test(x2,x1,alternative="greater")$p.value
}
mean_pvalues2[j] <- mean(pvalues < 0.05)
j=j+1
}
mean_pvalues2
#plot(sample_size,mean_pvalues2)
lines(sample_size,mean_pvalues2,col="red")
[ /code][/I][/I]